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Abstract—Ergodic coverage effectively generates exploratory
behaviors for embodied agents by aligning the spatial distribution
of the agent’s trajectory with a target distribution, where the
difference between these two distributions is measured by the
ergodic metric. However, existing ergodic coverage methods are
constrained by the limited set of ergodic metrics available for con-
trol synthesis, fundamentally limiting their performance. In this
work, we propose an alternative approach to ergodic coverage
based on flow matching, a technique widely used in generative
inference for efficient and scalable sampling. We formally derive
the flow matching problem for ergodic coverage and show that
it is equivalent to a linear quadratic regulator problem with a
closed-form solution. Our formulation enables alternative ergodic
metrics from generative inference that overcome the limitations of
existing ones. These metrics were previously infeasible for control
synthesis but can now be supported with no computational
overhead. Specifically, flow matching with the Stein variational
gradient flow enables control synthesis directly over the score
function of the target distribution, improving robustness to the
unnormalized distributions; on the other hand, flow matching
with the Sinkhorn divergence flow enables an optimal transport-
based ergodic metric, improving coverage performance on non-
smooth distributions with irregular supports. We validate the
improved performance and competitive computational efficiency
of our method through comprehensive numerical benchmarks
and across different nonlinear dynamics. We further demonstrate
the practicality of our method through a series of drawing and
erasing tasks on a Franka robot.

I. INTRODUCTION

Many robotic tasks, such as search and rescue [36], wildlife
surveys [44], and precision agriculture [37], require robots to
generate motions to explore spatial distributions like thermal
signals, population distributions, or soil contaminant levels.
Exploration over distributions is challenging, as robots must
prioritize high-density regions while also investigating lower-
density areas. To address the long-horizon and non-myopic na-
ture of exploration tasks, ergodic coverage generates optimized
trajectories whose spatial distribution aligns with the target
distribution, providing a formal, information-theoretic notion
of coverage that is crucial for exploration tasks. Over the past
decade, ergodic coverage has been applied to a wide range of
applications, including environmental monitoring [24, 43], tac-
tile sensing [2, 3], learning from demonstrations [23, 45, 48],
shared control [12, 13], and embodied active learning [40, 42].

Ergodic coverage solves an optimization problem that min-
imizes the ergodic metric, which measures the difference
between the empirical spatial distribution of the trajectory
and the target distribution [35], while respecting the agent’s
dynamic constraints. Existing methods are often based on stan-

dard trajectory optimization techniques, such as projection-
based methods [33] and augmented Lagrange multiplier meth-
ods [10]. However, to be compatible with standard trajectory
optimization methods, the ergodic metric, even though it
evaluates the difference between distributions, must be defined
over trajectories. It must also be explicitly formulated and
differentiated as runtime cost function. As a result, existing
ergodic metrics, such as the most commonly used Fourier
ergodic metric [31] and recently developed kernel-based met-
rics [17, 48], need to be derived specifically to meet this
requirement. On the other hand, commonly used statistical
measures in machine learning, such as Kullback-Leibler diver-
gence and optimal transport metrics, are infeasible as the er-
godic metric for control synthesis using the standard trajectory
optimization methods. This limitation fundamentally restricts
the performance of existing ergodic coverage methods.

From a different perspective, ergodic coverage can also be
viewed as a sampling process: generating ergodic trajecto-
ries resembles sampling from the target distribution, where
the samples are constrained spatially and temporally under
the embodied agent’s dynamics. Recently, continuous flow-
based sampling approaches, such as score function-based
sampling [29, 47] and continuous normalizing flows [7],
have gained significant attention due to their accuracy and
computational efficiency, as well as their compatibility with
a wide range of statistical discrepancy measures, such as
the Kullback-Leibler (KL) divergence [29] and optimal trans-
port metrics [14]. Furthermore, the flow matching method
from Lipman et al. [27] enables scalable and efficient opti-
mization of a parameterized flow model based on a reference
flow, achieving state-of-the-art performance in generative mod-
eling [41, 49].

In this work, we bring the advantages of flow-based sam-
pling and flow matching to ergodic coverage to overcome the
limitations of existing ergodic metrics and trajectory optimiza-
tion methods. Our main contributions are twofold:

1) We formally derive the flow matching problem from Lip-
man et al. [27] for ergodic coverage and show that it is
equivalent to a linear quadratic regulator (LQR) problem.
This theoretical result leads to a closed-form iterative
optimization algorithm for generating ergodic trajectories
with a reference flow from existing flow-based sampling
methods (see Fig. 1).

2) We derive three reference flows for ergodic coverage: the
standard Fourier ergodic metric [31], the Stein variational
gradient flow [29], and the Sinkhorn divergence flow [14].

https://murpheylab.github.io/lqr-flow-matching/


Update SamplesCurrent SamplesTarget Distribution

Final TrajectoryFlow MatchingCurrent TrajectoryTarget Distribution

Flow-based generative inference

(Ours) Flow matching ergodic coverage

Construct Flow Final Samples

(Repeat)

Construct Flow

(Repeat)

Fig. 1: Similarity between flow-based generative inference and flow matching ergodic coverage.

We show that our method is compatible with the standard
ergodic metric and enables alternative ergodic metrics
previously infeasible for control synthesis without com-
putational overhead. Compared to state-of-the-art meth-
ods, the alternative metrics improve the performance of
ergodic coverage over unnormalized distributions and
distributions with irregular supports.

Lastly, we demonstrate our method on a Franka robot through
a series of drawing and erasing tasks similar to [30, 6]. The
code of our implementations and videos of the experiments can
be found at our project website: https://murpheylab.github.io/
lqr-flow-matching/.

II. PRELIMINARIES AND RELATED WORK

A. Notation

We denote an n-dimensional search space as X ⊆ Rn. The
trajectory of the agent is defined as a mapping s : [0, T ] 7→ X ,
where T is the time horizon of the trajectory. The trajectory
is governed by the agent’s dynamics, ṡ(t) = f(s(t), u(t)),
with u(t) ∈ U ⊂ Rm as the control. The probability density
function of the target distribution is denoted as q : X 7→ R+

0 .
We denote the space of all probability distributions over the
domain X as P .

B. Overiew of ergodic coverage

The goal of ergodic coverage is to match the spatial distri-
bution of the robot trajectory s(t) with the target distribution
q(x). The spatial distribution of a trajectory is defined by
extending the definition of empirical distribution.

Definition 1 (Trajectory empirical distribution). Given a tra-
jectory s(t), the associated empirical distribution is:

p[s](x) =
1

T

∫ T

0

δ(x− s(t))dt, (1)

where δ(x) is a Dirac delta function with the following inner
product property:∫

X
δ(x−s)f(x)dx = f(s), ∀s ∈ X , ∀f ∈ C(X ), (2)

the set C(X ) contains all continuous functions over X .

Note that the Dirac delta function δ(x) is often heuristically
represented as a point-wise mapping:

δ(x) =

{
+∞, if x = 0,

0, otherwise.
(3)

But the Dirac delta function is formally a generalized function
(also called a distribution) that is not defined as a point-wise
mapping but based on the inner product property shown in
(2) [26].

Definition 2 (Ergodic system [38, 52]). A dynamic system s(t)
is ergodic with respect to q(x) if and only if:

lim
T→∞

∫
X
g(x)dp[s](x) =

∫
X
g(x)dq(x), ∀g ∈ C(X ). (4)

Lemma 1. A necessary condition for Definition 2 is:

lim
T→∞

p[s](x) = q(x), ∀x ∈ X . (5)
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Definition 3 (Discrepancy measure). A discrepancy measure
D : P × P 7→ R+

0 is a non-negative functional, such that
D(p(x), q(x)) = 0 if and only if p(x) = q(x),∀x ∈ X .

Definition 4 (Ergodic metric). Given a discrepancy measure
D, the ergodic metric E : ST × P 7→ R+

0 is defined as:

E(s(t), q(x)) = D(p[s](x), q(x)). (6)

Lemma 2. Based on Lemma 1, a necessary condition for
Definition 2 is:

lim
T→∞

E(s(t), q(x)) = 0. (7)

Note that an exact ergodic system exists only at the limit of
infinite time horizon. In practice, however, ergodic coverage
approximately synthesizes an ergodic system with finite time
horizon T through the following optimization problem.

Definition 5 (Ergodic coverage).

u(t)∗ = argmin
u(t)

E(s(t), q(x)), (8)

s.t. s(t) = s0 +
∫ t

0
f(s(t′), u(t′))dt′, t∈[0, T ].

Solving (8) is not easy for two main reasons. First, many com-
monly used discrepancy measures, such as the KL-divergence,
are computationally intractable to evaluate and optimize di-
rectly. This issue is further complicated by the fact that p[s]
is an empirical distribution—where the Dirac delta function
cannot be evaluated numerically—and the target distribution
q(x) in practice is often represented not as a standard prob-
ability density function, but instead in other forms such as
unnormalized utility functions, samples, or discrete density
grids. Second, optimization of the ergodic metric must respect
the dynamics constraints of the system, and system dynamics
can be highly nonlinear in practice, which introduces extra
computational challenges.

In the next section, we will review existing ergodic metrics
and the corresponding control synthesis methods, focusing on
how they address these challenges and their limitations.

C. Review of existing ergodic coverage methods

In [31], the ergodic metric is specified as a Sobolev space
distance using Fourier basis functions, which we name the
Fourier ergodic metric. This formula offers a computationally
tractable approximation of the ergodic metric for numerical
optimization by truncating a finite number of Fourier basis
functions. A closed-form model predictive control formula
with an infinitesimally small planning horizon is proposed to
approximate a solution to the constrained trajectory optimiza-
tion problem. However, this method does not generate optimal
ergodic coverage trajectories with a fixed time horizon, which
is crucial for practical applications [10, 48].

Alternative trajectory optimization methods have been used
to optimize the Fourier ergodic metric over long horizons.
A projection-based trajectory optimization algorithm is intro-
duced by Miller and Murphey [34], and a method based on
augmented Lagrange multiplier, which can incorporate other

constraints such as time-optimality and collision avoidance, is
proposed by Dong et al. [10]. In [32], a hybrid system-based
model predictive control algorithm is introduced with longer
planning horizons, which can be extended for multi-agent
systems [1]. In [45], the evaluation of the Fourier ergodic met-
ric is further accelerated through tensor-train decomposition,
especially for applications in high-dimensional spaces. Lastly,
it is worth noting that ergodic coverage does not have a unique
optimal solution, as there exist multiple or even an infinite
number of optimal trajectories with a given ergodic metric. To
address this unique property of ergodic coverage, a variational
inference-based trajectory optimization framework is proposed
in Lee et al. [25] using the Stein variational gradient descent
algorithm.

On the other hand, several alternative metrics other than
the Fourier ergodic metric have been proposed. A kernel-
ized ergodic metric is proposed by [48], which approximates
the L2 distance between distributions under mild regularity
conditions and can be optimized through a projection-based
algorithm similar to [34]. The kernel ergodic metric has a
better scalability compared to the Fourier ergodic metric,
and it can be extended to Lie groups. In [18], maximum
mean discrepancy (MMD), a statistical measure formulated in
the reproducing kernel Hilbert space for two-sample tests, is
proposed as the ergodic metric. The MMD metric only requires
samples from the target distribution instead of probability
density functions and can also be extended to Lie groups.
Trajectory optimization for the MMD-based metric can be
solved using the same augmented Lagrange multiplier-based
method in [10]. Lastly, an alternative metric is introduced
in [20] using heat equation, which leads to a better balance
between global and local exploration compared to the Fourier
ergodic metric, and has been applied to multi-robot aerial
survey [24] and tactile sensor-based coverage [6]. However,
the trajectory optimization problem is solved through a similar
model predictive control formula with an infinitesimally small
time horizon as in [31]. Thus, the resulting trajectories do not
generate optimal ergodic coverage performance with a fixed
time horizon.

D. Flow-based sampling

[Overview] Consider the problem of sampling from a target
distribution q(x), while only having access to samples {xi}
from an initial distribution p0(x). One intuition might be to
find the optimal transformation ϕ∗(x) : X 7→ X , such that
the transformed samples {ϕ∗(xi)} match the statistics of the
target distribution q(x).

Furthermore, the transformation ϕ(x) can be constructed
as a time-dependent transformation ϕ(τ, x) through a time-
dependent vector field g(τ, x) as:

d

dτ
ϕ(τ, x) = g(τ, ϕ(τ, x)), ϕ0(x) = x, τ ∈ [0, T ], (9)

where ϕ(τ, x) is called a flow and g(τ, x) is the flow vector
field. The flow creates a probability density path p(τ, x)



governed by the Fokker–Planck equation [22]:

d

dτ
p(τ, x) = ∇ · (p(τ, x)g(τ, x)), p(0, x) = p0(x) (10)

Given the set of samples {x′
i} from the initial distribution

p0(x), the flow also creates a path xi(τ) for each sample:

d

dτ
xi(τ) = g(τ, xi(τ)), xi(τ) = x′

i, τ ∈ [0, T ]. (11)

Therefore, flow-based sampling can be formulated as finding
the optimal flow vector field to transform the initial distribution
p0 toward the target distribution q(x).

Definition 6 (Flow-based sampling).

g∗(τ, x) = argmin
g(τ,x)

lim
τ→T

D(p(τ), q), (12)

where D is a discrepancy measure between distributions.

[Related work] Instead of directly solving (12), most existing
flow-based sampling methods construct the flow vector field
as a descent direction of the discrepancy measure D(p, q), in
which case the transformation of the distribution is equivalent
gradient descent in the space of probabilistic measures. The
Stein variational gradient descent (SVGD) algorithm [28, 29]
constructs the Stein variational gradient flow as the steepest
descent direction of the KL-divergence in a reproducing kernel
Hilbert space. Another widely used family of flow-based
sampling methods is based on Wasserstein gradient flows,
which originate from the seminal work of Jordan et al. [22].
Wasserstein gradient flows construct the steepest descent direc-
tion using the Wasserstein metric, where the discrepancy mea-
sure D(p, q) can be specified as optimal transport (OT) [50]
metrics, maximum mean discrepancy (MMD) [5], and more
recently the Sinkhorn divergence [14], which interpolates
between MMD and OT metrics [11].

E. Flow matching

The flow vector field can also be modeled as a parametric
function approximator (e.g., neural networks), which leads
to the continuous normalizing flows (CNFs) framework [7].
However, the standard maximum likelihood training of CNFs
requires numerical simulation of the flow dynamics, which can
be prohibitively expensive. To address this issue, flow match-
ing is proposed by Lipman et al. [27] as a computationally
efficient optimization paradigm for CNFs.

Given a dataset {x̄i} as the samples from the target distri-
bution q(x), the overall goal of CNFs is to learn to generate
novel samples from q(x) by transforming samples {xi} from
an initial distribution p0(x), often specified as a Gaussian
distribution. The flow matching framework optimizes a pa-
rameterized flow vector field g(τ, x; θ) through the following
optimization problem (equation 5, [27]).

Definition 7 (Flow matching).

θ∗ = argmin
θ

Eτ,p(τ,x)∥h(τ, x)− g(τ, x; θ)∥2, (13)

where p(τ, x) is a probability density path toward the target
distribution q(x) under the reference flow vector field h(τ, x).

The reference flow can be constructed using methods from
flow-based sampling, with examples including the probability
flow ODE based on the score function [47] or optimal transport
metrics [49].

The flexibility of flow-based sample generation combined
with the computation efficiency of flow matching has emerged
as a powerful framework for generative inference, with appli-
cations in image generation [41, 49], protein structure genera-
tion [19, 21], computer vision [53], trajectory prediction [54],
and robot policy learning [8].

III. FLOW MATCHING ERGODIC COVERAGE

A. Problem formulation

Given a dynamic system f(s(t), u(t)) with initial condition
s0, we define a control sequence path u(τ, t), in which there
are two temporal variables: the system time t∈[0, T ] is the
associated with dynamic system (e.g., the time variable for
simulating the system trajectory s(t)), and the flow time
τ∈[0, T ] is the time associated with the evolution of the
entire control sequence (e.g., the time variable in flow-based
sampling). The flow dynamics of the control sequence path
u(τ, t) at any system time t is defined as:

d

dτ
u(τ, t) = v(τ, t). (14)

We name v(τ, t) the control sequence flow as it describes the
evolution of the control at any system time t across the flow
time τ . The control sequence path u(τ, t) generates a system
trajectory path s(τ, t), which is defined at any system time t
as:

s(τ, t)=s0+

∫ t

0

f(s(τ, t′), u(τ, t′))dt′, t∈[0, T ], τ∈[0, T ].
(15)

We further define the empirical distribution path p[s](τ, x)
based on the system trajectory path (15):

p[s](τ, x) =
1

T

∫ T

0

δ(x− s(τ, t))dt. (16)

Similar to (10), the flow dynamics of p[s](τ, x) is governed
by:

d

dτ
p[s](τ, x) = ∇ · (p[s](τ, x)z(τ, x)), (17)

where z(τ, x) is the empirical distribution flow. It is the
flow vector field of the empirical distribution path p[s](τ, x),
induced by the control sequence flow v(τ, t) under the dy-
namics constraints of (15). We now define flow-based ergodic
coverage based on flow-based sampling (12).

Definition 8 (Flow-based ergodic coverage).

v∗(τ, t) = argmin
v(τ,t)

lim
τ→T

D(p[s](τ, x), q(x)), (18)



Algorithm 1 Flow matching ergodic coverage

1: procedure FLOWMATCHING(s0, u0(t), η, ∆τ )
2: τ ← 0
3: while not converged do
4: Simulate s(τ, t) from s0 and u(τ, t) with τ fixed
5: Evaluate the reference flow h(τ, s(τ, t)) at τ
6: Solve (24) for v(τ, t)
7: uτ+∆τ (t)← u(τ, t) + η · v(τ, t)
8: τ ← τ +∆τ
9: end while

10: return s(τ, t) and u(τ, t)
11: end procedure

s.t. s(τ, t)=s0+

∫ t

0

f(s(τ, t′), u(τ, t′))dt′,
d

dτ
u(τ, t)=v(τ, t).

(19)

Lemma 3. The solution of flow-based ergodic coverage (18)
at τ=T is the solution of standard ergodic coverage (6).

However, because of the dynamics constraints (19) between
the system trajectory path s(τ, t) and the control sequence
path u(τ, t), the above optimization problem cannot be solved
directly. Instead, we formulate a flow matching problem for
ergodic coverage based on (13).

Definition 9 (Flow matching ergodic coverage).

v∗(τ, t) = argmin
v(τ,t)

Ep[s](τ,x)∥h(τ, x)− z(τ, x)∥2, ∀τ∈[0,T ],

(20)

where h(τ, x) is a reference flow vector field that generates a
probability density path toward q(x) from p[s](τ, x).

The reference flow can be constructed the same way as
in existing flow-based sampling methods and we will specify
three reference flows in Section III-C.

The intuition behind the flow matching ergodic coverage
formulation (20) is to find the optimal control sequence flow
v(τ, t) such that the induced empirical distribution flow z(τ, x)
closely match the reference flow h(τ, x) at any flow time τ ,
thus generating a path of the trajectory empirical distribution
toward the target distribution. However, to solve the flow
matching problem, we still need to derive the relationship
between the control sequence flow v(τ, t) and the induced em-
pirical distribution flow z(τ, x) under the dynamics constraints
(19). In the next section, we will show that z(τ, x) and v(τ, x)
are governed by a linear dynamic system. Therefore, (20) is
equivalent to a linear quadratic regulator (LQR) problem—
which we name linear quadratic flow matching—that can be
solved in closed-form at any flow time τ .

B. Linear quadratic flow matching

We start the derivation of the linear quadratic flow matching
problem by substituting the definition of p[s](τ, x) into the flow
matching objective (20):

Ep[s](τ,x)∥h(τ, x)− z(τ, x)∥2

=

∫
X

(
1

T

∫ T

0

δ(x−s(τ, t))dt
)
∥h(τ, x)− z(τ, x)∥2dx

=
1

T

∫ T

0

(∫
X
δ(x−s(τ, t))∥h(τ, x)− z(τ, x)∥2dx

)
dt

=
1

T

∫ T

0

∥h(τ, s(t))− z(τ, s(t))∥2dt

=
1

T

∫ T

0

∥h̃(τ, t)− z̃(τ, t)∥2dt. (21)

We now derive the system time dynamics of z̃(τ, t) under
the control sequence flow v(τ, t) at any flow time τ . As defined
in (17), z(τ, x) is the flow vector field of p[s](τ, x), since the
probability density path p[s](τ, x) is an empirical distribution
path (16) over the system trajectory path s(τ, t) (15), we have
the following based on (11):

d

dτ
s(τ, t) = z(τ, s(τ, t)) = z̃(τ, t). (22)

Furthermore, the system trajectory path s(τ, t) is governed
by the dynamics shown in (15) and the control sequence path
u(τ, t) is governed by the ODE shown in (14). Therefore, with
a sufficiently small perturbation ϵ>0 at a fixed τ , we have:

s(τ, t) + ϵ · z̃(τ, t)

= s0+

∫ t

0

f
(
s(τ, t′) + ϵ · z̃(τ, t′), u(τ, t′) + ϵ · v(τ, t′)

)
dt′,

from which1 we have the dynamics of z̃(τ, t) as:

z̃(τ, t) =
d

dϵ
[s(τ, t) + ϵ · z̃(τ, t)]ϵ=0

=
d

dϵ

[∫ t

0

f
(
s(τ, t′)+ϵ·z̃(τ, t′), u(τ, t′)+ϵ·v(τ, t′)

)
dt′
]
ϵ=0

=

∫ t

0

d

dϵ

[
f
(
s(τ, t′)+ϵ·z̃(τ, t′), u(τ, t′)+ϵ·v(τ, t′)

)]
ϵ=0

dt′

=

∫ t

0

A(τ, t′)·z̃(τ, t′) +B(τ, t′)·v(τ, t′)dt′, (23)

where

A(τ, t′) =
∂

∂s
f(s(τ, t′), u(τ, t′)),

B(τ, t′) =
∂

∂u
f(s(τ, t′), u(τ, t′)).

From (23), we can see that the system time dynamics of
z̃(τ, t) and v(τ, t) are governed by a time-varying linear
system at a fixed flow time τ , which is the linearization of the
system dynamics f(s(t), u(t)). We can now define the linear
quadratic flow (LQ) matching problem based on this result.

Definition 10 (Linear quadratic flow matching). At any flow
time τ , the problem is defined as

v∗(τ, t) = argmin
v(τ,t)

∫ T

0

∥h̃(τ, t)−z̃(τ, t)∥2Q+∥v(τ, t)∥2Rdt

(24)

1Note that there is no perturbation on the initial state s0 since it is fixed.
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Fig. 2: The bandwidth of the RBF kernel in Stein variational gradient flow affects the resulting ergodic trajectories. Overly
small bandwidth could cause the mode collapse issue while overly large bandwidth could also lead to under-exploration.

s.t. z̃(τ, t) =
∫ t

0

A(τ, t′)·z̃(τ, t′) +B(τ, t′)·v(τ, t′)dt′, (25)

where Q and R are regularization matrices.

The LQ flow matching problem (24) follows the standard
linear quadratic regulator formula; thus, it is convex and
can be solved in closed-form by solving the continuous-
time Riccati equation [16]. To generate an ergodic coverage
trajectory, the linear quadratic flow matching problem can be
solved at a given flow time τ (starting from τ=0) to generate
the optimal control sequence flow v∗(τ, t), from which we
can forward simulate the control sequence path u(τ, t) using
Euler’s method:

u(τ+∆τ, t) = u(τ, t) + η · v∗(τ, t), (26)

where ∆τ and η are the integration step size for the flow time
and the control sequence path, respectively. We summarize
the overall process in Algorithm 1. Note that the projection-
based trajectory optimization method from [34] also solves
an LQR problem in each iteration, but the LQR formulation
in [34] is different from ours (24) and must be analytically
derived for a specific ergodic metric, while our linear quadratic
flow matching formula is compatible with any reference flow
without adaptation. Lastly, some flow specifications, such as
in continuous normalizing flows, require a finite terminal flow
time T , while others, such as Stein variational gradient flows,
converge as T →∞. The latter case reduces the dependency
on explicit integration of the flow time τ , which improves the
numerical stability. In the next section, we will provide three
specifications for the reference flow, none of which requires a
finite flow time range T .

C. Specifications of reference flows

We first derive the reference flow for the widely used Fourier
ergodic metric from Mathew and Mezić [31]. We then specify
the reference flow using the Stein variational gradient flow [29]
and Sinkhorn divergence flow [11].
[Fourier ergodic metric flow] Without loss of generality,
we define the normalized Fourier basis function over a n-
dimensional rectangular space S=[0, L1]× · · ·×[0, Ln]:

fk(x) =
1

hk

n∏
i=1

cos

(
kiπ

Li
xi

)
(27)

where

x = [x1, x2, · · · , xn] ∈ S
k = [k1, · · · , kn] ∈ K ⊂ Nn

K = [0, 1, · · · ,K1]× · · · × [0, 1, · · · ,Kn],

and hk is the normalization term such that the norm of each
basis function is 1. The Fourier ergodic metric is defined based
on the Sobolev distance between two distributions:

D(p, q) =
∑
k∈K

λk(pk − qk)
2, (28)

pk=⟨p(x), fk(x)⟩, qk=⟨q(x), fk(x)⟩, λk=(1 + ∥k∥)−n+1
2 .

We can substitute p(x) as the trajectory empirical distribution
p[s](τ, x), which leads to the following based on the inner
product property of the Dirac delta function:

pk(τ) = ⟨p[s](τ, x), fk(x)⟩ =
1

T

∫ T

0

fk(s(τ, t))dt. (29)

Following [4], we can derive the reference flow for the Fourier
ergodic metric as a Wasserstein gradient flow:

h(τ, x) =
d

dx

[
∂

∂p
D(p[s](τ, x), q(x))

]
=

d

dx

[∑
k∈K

2λk(pk(τ)− qk)fk(x)

]

=
∑
k∈K

2λk(pk(τ)− qk) ·
d

dx
fk(x). (30)

Note that, the reference flow for the Fourier ergodic metric
can be evaluated in closed-form.
[Stein variational gradient flow] The Stein variational
gradient flows optimizes the KL-divergence between p[s](τ, x)
and the target distribution q(x):

DKL(p[s](τ, x), q(x)) = Ep[s](τ,x)

[
log

(
p[s](τ, x)

q(x)

)]
. (31)

It is defined as:

h(τ, x) = Ep[s](τ,x′) [Aqk(x, x
′)] , (32)

where k(x, x′) is a kernel function2 and A is the Stein

2It is often specified as a radial basis function (RBF) in practice.
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Fig. 3: The entropy regularization weight ϵ in Sinkhorn divergence (35) affects the resulting ergodic trajectories. Smaller values
make the divergence closer to the Wasserstein distance, improving coverage performance at the cost of slower computation [11].

operator [29] defined as:

Aqk(x, x
′) = k(x, x′)

d

dx
log q(x) +

d

dx
k(x, x′). (33)

The Stein reference flow only requires access to the derivative
of the log-likelihood function of the target distribution—also
called the score function of the target distribution. Further-
more, the expectation term in (32) can be calculated as:

Ep[s](τ,x′) [Aqk(x, x
′)] =

1

T

∫ T

0

Aqk(x, s(τ, t))dt. (34)

In Liu and Wang [29], it is shown that the Stein variational
gradient flow is the steepest descent direction for the KL-
divergence between p[s](τ, x) and q(x) in a reproducing kernel
Hilbert space.

The key advantage of the Stein variational gradient flow is
that, it requires evaluation of the score function—the derivative
of the log-likelihood of the target distribution. The evaluation
of score function does not require the target distribution to
have a normalized or even non-negative density function.
This property has been shown to significantly improve the
numerical stability of generative models in Song et al. [47].
Similarly, this property is also crucial for applications of er-
godic coverage as in practice, where the target distributions are
often unnormalized utility functions, such as from Gaussian
processes regression [3, 25]. On the other hand, similar to
Stein variational gradient descent SVDG), the choice of kernel
function parameters affects the resulting ergodic trajectories.
As shown in Fig. 2, in the case of a radial basis kernel
function, an overly small bandwidth could lead to the mode
collapse issue commonly seen in SVGD [55, 25] and an overly
large bandwidth could result in trajectories that under explore
regions with high density. Instead of hand-tuning the kernel
parameters, a parameter selection formula is given in Liu and
Wang [29] for radial basis kernel functions (See Section 5
of [29]).

Lastly, the use of Stein variational gradient flow in our
method is to replace the standard Fourier ergodic metric to
optimize a single trajectory. At the same time, Stein variational
inference is also applied to ergodic coverage to generate

multiple optimal trajectories under the Fourier ergodic metric
in Lee et al. [25].
[Sinkhorn divergence flow] The Sinkhorn divergence is a
discrepancy measure based on the entropic regularized optimal
transport distance OTω(p, q) between two distributions:

OTω(p, q)= min
π(x,x′)

Eπ

[
c(x, x′)

]
+ ωKL(π(x, x′)∥p(x)q(x′)),

s.t.
∫

π(x, x′)dx′ = p(x) and
∫

π(x, x′)dx = q(x′),

where the transport plan π(x, x′) is a joint probability distri-
bution, ω is a regularization weight term, and c(x, x′) is a cost
function3. The entropic regularized OT distance suffers from
entropic bias—the minima of OTω(p, q) is not 0 with ω>0.
The Sinkhorn divergence [14] removes the entropic bias:

Dω(p, q) = OTω(p, q)−
1

2
OTω(p, p)−

1

2
OTω(q, q). (35)

While evaluating the Sinkhorn divergence directly over
continuous probability density functions is computationally
intractable, it can be evaluated efficiently over samples from
the distributions using the Sinkhorn algorithm [9], which is
an iterative algorithm based on matrix scaling. Furthermore,
since all the calculations of the Sinkhorn algorithm are differ-
entiable, the gradient of the Sinkhorn divergence can be eval-
uated over a batch of samples using auto-differentiation [14].
For flow matching ergodic coverage, we can discretize the
system trajectory path s(τ, t) at discrete system time steps
{ti}. At a given flow time τ and a set of samples {x′

i} from the
target distribution q(x), we can directly evaluate the reference
flow h(τ, x) at all the discrete system time steps in a batch:

{h̃(τ, ti)}i = AutoDiff{s(τ,ti)}i

(
Dω

(
{s(τ, ti)}i, {x′

j}j
))

.

We refer the readers to [14] for more details on the calculation
of the Sinkhorn divergence and the Sinkhorn algorithm. In
our experiments, we use the Geomloss package from [11] to
efficiently evaluate the Sinkhorn divergence and the associated
flows, which supports accelerated evaluations on GPUs.

3It is often specified as the Lp distance between x and x′ in practice.
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Fig. 4: Results for Benchmark Q1. Quantitative (left) and qualitative (right) results for the comparison between our method
with existing trajectory optimization methods for the Fourier ergodic metric. Our method consistently reaches the same desired
level of ergodicity with less time. The white line in the violin plot is the median of the results, and the black dot in the
trajectory plot is the initial position.

As an optimal transport metric, the Wasserstein distance is
particularly sensitive to the deformation of the distributions’
supports [11], which makes Sinkhorn divergence flow partic-
ularly advantageous with non-smooth target distributions with
local geometric features, such as distributions with irregular
supports. On the other hand, the entropy regularization term ϵ
in (35) affects the resulting ergodic trajectories. As shown in
Fig. 3, smaller values of entropy regularization make Sinkhorn
divergence closer to the Wasserstein distance, improving the
coverage performance at the cost of slower computation [11].

IV. NUMERICAL BENCHMARK

A. Overview

We aim to answer the following four questions in our
numerical benchmarks:
Q1: For the Fourier ergodic metric, how does our flow match-

ing framework perform compared to existing trajectory
optimization methods in terms of ergodic coverage results
and numerical efficiency?

Q2: By integrating Stein variational gradient flows, does our
flow matching framework improve the robustness of
ergodic coverage when facing inaccurately normalized
target distributions?

Q3: By integrating Sinkhorn divergence flows, does our flow
matching framework improve the ergodic coverage results
over non-smooth target distributions?

Q4: How does our flow matching framework handle different
linear or nonlinear dynamics?

Q5: How does the trajectory horizon affect the computation
of each reference flow?

B. Baseline selection and implementation details

For Q1, we compare our method to two Fourier-based
ergodic trajectory optimization methods: the projection-based
trajectory optimization method from Miller and Murphey
[34] and the augmented Lagrange multiplier-based method
from [10]. For Q2, we use the Fourier ergodic metric and
the kernelized ergodic metric from Sun et al. [48], since both
metrics and the Stein variational gradient flow require access to
the probability density function of the target distribution. For

the non-smooth distributions in Q3, we use the Fourier ergodic
metric and the maximum mean discrepancy (MMD)-based
ergodic metric from Hughes et al. [18]; the Fourier ergodic
metric can be calculated over discretized target distribution
representations (e.g., images), and the MMD-based metric is
designed for sample-based distribution representations.

The computation related to the Fourier ergodic metric is im-
plemented in Python using the JAX package for acceleration.
We implement the continuous-time Riccati equation solver
for the linear quadratic flow matching problem (24) in C++
with Python interface, same as the projection-based trajectory
optimization algorithm. We use the JAX-based implementation
from Dong et al. [10] for the augmented Lagrange multiplier-
based trajectory optimization method. The computation related
to Sinkhorn divergence is implemented in Python using the
Geomloss package from Genevay et al. [14]. The code of
our implementation will be released on the project website:
https://murpheylab.github.io/lqr-flow-matching/.

C. Experiment results for Q1

[Benchmark Q1 design] We randomly generate a tri-
modal Gaussian mixture distribution and the initial posi-
tion in each trial, and benchmark our flow matching frame-
work (FM) alongside projection-based trajectory optimization
(Projection) and augmented Lagrange multiplier-based trajec-
tory optimization (Lagrange) over 100 trials. We set a desired
value of the Fourier ergodic metric 0.005, and measure the
wall clock time required for each method to reach the desired
level of ergodicity (in seconds). We use second-order point
mass dynamics for all the tests.
[Q1 results] The statistics of the elapsed times for all the
methods across the 100 randomized trials are shown in Fig. 4
(left). The results show that our flow matching framework
consistently reaches the desired level of ergodicity in less time.
In Fig. 4 (right), we also show qualitative comparisons of the
ergodic trajectories generated by each method over the same
target distribution and under the same initial condition.

D. Experiment results for Q2

We answer Q2 with two numerical benchmarks (Q2.A and
Q2.B). Details of benchmark design and results are as follow.

https://murpheylab.github.io/lqr-flow-matching/


FM−Stein Fourier Kernel

10−3

10−2

10−1

100

101
Ergodicity (↓ lower is better) FM−Stein(Ours) Fourier Kernel

Fig. 5: Benchmark Q2.A. Quantitative (left) and qualitative (right) results show that our method is more accurate and consistent
under normalization errors compared to SOTA methods. The white line in the violin plot is the median of the results, and the
black dot in the trajectory plot is the initial position.
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Fig. 6: Benchmark Q2.B. Quantitative (left) and qualitative (right) results show that our method is consistently collects more
positive life signals compared to SOTA methods with unnormalized target distributions. The white line in the violin plot is the
median of the results, and the black dot in the trajectory plot is the initial position.

[Benchmark Q2.A design] We follow the same randomiza-
tion process in Q1. In addition, we randomly scale the target
distribution between 0.1 and 10.0 to introduce normalization
errors. We use our method with the Stein variational gradient
flow (FM-Stein) and compare it with the Fourier ergodic
metric optimized (Fourier) and the kernelized ergodic metric
optimized (Kernel), all three of which require access to the
probability density function of the target distribution. We
optimize the Fourier ergodic metric using the augmented
Lagrange multiplier-based method from Dong et al. [10]
and the kernelized ergodic metric using the projection-based
trajectory optimization method from Sun et al. [48], as these
implementations yield the best empirical results and thus
better demonstrate the properties of each ergodic metric. Each
method is allowed to optimize for up to 0.5s wall clock
time in each trial, and we report the Fourier ergodic metric
with respect to the correctly normalized target distribution
for the converged trajectory. We use second-order point mass
dynamics for all the tests.

[Q2.A results] The statistics of the ergodic metric at con-
vergence for each method are shown in Fig. 5 (left). The
results show that the ergodic metric value that our method
converges to is, on average, one order of magnitude lower
than the two baselines, despite the inaccurately normalized
target distributions and all within the same amount of wall
clock time. Compared to the Fourier metric, our method is also
more consistent across the 100 trials. A qualitative comparison

between the trajectories is also shown in Fig. 5 (right). The
results show that both baselines fail to sufficiently explore the
target distribution under normalization error, while our method
successfully generates an accurate coverage trajectory.

[Benchmark Q2.B design] We test the three methods in
Benchmark Q2.A in a simulated search and rescue (SAS)
benchmark. Given a search space, we assume there are un-
known regions within the space that emit positive life signals.
A set of prior negative and positive life signals are sparsely
sampled across the search space, the target distribution is the
likelihood of measuring positive life signal across the search
space computed using Gaussian processes (GPs) from the prior
measurements, which is an unnormalized density function.
The task of the benchmark is to explore the space to collect
positive life signals given the GP estimation. We model the
robot dynamics as a second-order differential-drive system.
We conduct 100 test trials with randomized prior measurement
and robot initial state.

[Q2.B results] The statistics of the number of positive
life signals collected by each method are shown in Fig. 6
(left), where our method consistently collect more positive life
signals compared to the two baseline SOTA methods. Further-
more, the coverage trajectories from the tested methods in a
representative trial are shown in Fig. 6 (right). These results
show the advantage of the Stein variational gradient flow in
practical applications, where unnormalized target distributions
negatively affect the performance of existing ergodic coverage
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Fig. 7: Qualitative results for Q3.A. Our method better captures the non-smooth geometry of the target distributions by
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Fig. 9: Quantitative results for Q3.A. Our method consis-
tently reaches lower coverage errors compared to the baselines.
The white line in the violin plot is the median of the results.

methods but does not affect our flow matching method.

E. Experiment results for Q3

We answer Q3 with two numerical benchmarks (Q3.A and
Q3.B). Details of benchmark design and results are as follow.
[Benchmark Q3.A design] We choose 10 open source stock
icons as the non-smooth target distributions (shown in Fig. 7)
and conduct 10 trials with randomized initial positions on
each icon for all the methods tested (100 trials in total).
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Fig. 10: Quantitative results for Q3.B. Our method consis-
tently reaches lower coverage errors compared to the baselines.
The white line in the violin plot is the median of the results.

We use our method with the Sinkhorn divergence flow (FM-
Sinkhorn) and compare it to the same Fourier ergodic metric
baseline from Benchmark Q3 (Fourier) and the maximum
mean discrepancy metric optimized using the same augmented
Lagrange multiplier-based method [17] (MMD). The target
distribution is represented as discrete grids for Fourier and
discrete samples (drawn using rejection sampling) for FM-
Sinkhorn and MMD. Since the target distributions are non-
smooth uniform distributions, we measure the coverage error
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Fig. 11: Results for Q4. Our method generates comparable ergodic coverage trajectories across six different dynamics.
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Fig. 12: Results for Q4. Qualitative results with 3D aircraft
dynamics using both the Stein variational gradient flow and
Sinkhorn divergence flow.

using the trajectory uniformity metric in Mathew and Mezić
[31] (equation 4). We use second-order point mass dynamics
for all the tests.
[Q3.A results] In Fig. 7, we qualitatively show trajectories
for each method across the 10 tested target distributions.
Our method better captures the non-smooth geometry of the
target distributions by leveraging the Sinkhorn divergence flow,
which is a known advantage of optimal transport metrics [39].
The quantitative results are shown in Fig. 9. On average, our
method has a coverage error of 0.001, which is two times
lower than MMD (0.0028) and Fourier (0.0023).
[Benchmark Q3.B design] We further test the methods
from Benchmark Q3.A using the NASA Mars Water Resource
Maps (MWR)4 as the target distribution. We model the robot
dynamics as a second-order differential-drive system. We
conduct 100 test trials with randomized robot initial state
and evaluate the coverage error using the same metric from
Benchmark Q3.A.
[Q3.B results] In Fig. 8, we qualitatively show the trajectories
from a representative trial. Quantitative results are shown in
Fig. 10. Different from the target distributions in Benchmark
Q3.A, the target distributions from the Mars Water Resource
Maps has irregular and discontinuous supports, which are com-
mon in real-world exploration tasks and create extra challenges

4https://ammos.nasa.gov/marswatermaps/?mission=MWR
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Fig. 13: Results for Q5. Elapsed time of solving the linear
quadratic flow matching problem across different trajectory
horizons with all three reference flows.

for ergodic coverage. From the results, we can see that ergodic
coverage based on MMD is particularly affected by such target
distributions, while our method using the Sinkhorn divergence
flow consistently produces the best coverage trajectories across
the benchmark trials, demonstrating the advantage of optimal
transport-based ergodic metric in practical applications.

F. Experiment results for Q4

We specify the target distribution as a trimodal Gaussian
mixture model and use our method with the Stein variational
gradient flow. We fix the initial position of the robot and test
our method with six different dynamics: first and second-order
point mass dynamics, first and second-order differential drive
dynamics, and first and second-order Dubins car dynamics.
The results are qualitatively shown in Fig. 11, which show
that our method generates comparable coverage trajectories
across different linear and nonlinear dynamics.

Furthermore, we qualitatively test our method for 3D cov-
erage tasks with the 3D aircraft dynamics from Lee et al.
[25]. Results from both the Stein variational gradient flow
and Sinkhorn divergence flow are shown in Fig. 12 and are
included in our project website.

https://ammos.nasa.gov/marswatermaps/?mission=MWR
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Fig. 14: Drawing task. Planned object drawing trajectories (left), an example time sequence (middle), and final robot drawings
(right). See videos on project website: https://murpheylab.github.io/lqr-flow-matching/.

G. Experiment results for Q5

We evaluate the elapsed time of solving the linear quadratic
flow matching problem (24) across different trajectory time
horizons (100 to 1000 time steps) for all three reference flows.
From the results shown in Fig. 13, we can see the flow
matching formula exhibits a linear time complexity for all
three reference flows. Furthermore, flow matching with the
Fourier ergodic metric flow has near identical computation
time with the Stein variational gradient flow. While flow
matching with Sinkhorn divergence flow takes longer time,
it is still sufficient for real-time trajectory optimization.

V. HARDWARE DEMONSTRATIONS

We demonstrate the effectiveness of our method on a Franka
Emika Panda robot for a series of drawing and erasing tasks.
For both tasks, we use the Sinkhorn divergence flow to
generate ergodic coverage trajectories over five open source
stock icons as the target distributions. For the drawing task
(see Fig. 14), the robot end-effector is equipped with a dry-
erase marker, which is used to draw the desired trajectories on
a whiteboard. For the erasing task (see Fig. 15), we manually
fill in regions of the whiteboard corresponding to the desired
objects and attach an eraser to the robot’s end-effector. For
both hardware tasks, the trajectories are pre-planned in the x-
y plane using double-integrator point mass dynamics and are
executed open-loop. The robot controller operates at 3 Hz for
drawing and 6 Hz for erasing.

In Fig. 14, we qualitatively show that all planned drawing
trajectories were feasible for the robot to execute. The Final
drawings (right) closely resemble the planned trajectories
(left). In Fig. 15, we qualitatively show that the robot suc-
cessfully erased all filled object drawings. We further conduct
closed-loop erasing experiments with the onboard camera of
the robot providing image feedback, where new drawings are
added during erasing. Videos of both the open-loop and closed-
loop hardware demonstrations can be found on the project

website, which illustrate the different paths executed for each
object.

VI. LIMITATIONS

The proposed flow matching framework focuses on tra-
jectory optimization, aiming to generate the most ergodic
trajectory within a fixed time horizon. In contrast, feedback
control-based ergodic coverage methods [20, 45, 6] offer
improved computational efficiency and robustness to runtime
disturbances, but typically require more time to achieve com-
parable coverage [48]. The Fourier ergodic metric enables
online model predictive control while still guaranteeing the
asymptotic convergence [31, 32], such that the robot can
rapidly react to unknown perturbations during the task (e.g.,
noisy odometry readings) while still maintaining good cover-
age performance. However, it is unclear if a model predictive
control variant of the flow matching formula has a similar
asymptotic convergence guarantee for the Stein variational
gradient flow or the Sinkhorn divergence flow. As a result,
all the experiments in this work are based on long-horizon
trajectory optimization, which generates a reference trajectory
prior to the task, and the control actions for the robot during
runtime are generated through a lower-level tracking-based
controller. While the flow matching method has sufficient
computational efficiency to replan during runtime, the lack of
a model predictive control or feedback control formula with
asymptotic convergence guarantees remains a limitation of this
work.

In addition, there are limitations for the two alternative
ergodic metrics introduced in this work. Despite the ability to
generate ergodic trajectories over unnormalized distributions
using the Stein variational gradient flow, the score function in
(32) cannot be computed in closed-form if the target distri-
bution is represented as samples. While there exist techniques
such as score matching [46, 51] to estimate the score function
from data, the optimization cannot be conducted in real-time,

https://murpheylab.github.io/lqr-flow-matching/
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Fig. 15: Erasing task. Initial filled object drawings to be erased (left), an example time sequence (middle), and final result
for each erased object (right). See videos on project website: https://murpheylab.github.io/lqr-flow-matching/.

and the estimated score function can be inaccurate in regions
with low sample density [46]. Furthermore, while the kernel
function improves computational efficiency and flexibility, the
kernel function only provides local correlation between the
states; thus, it could lead to sub-optimal performance over
spatially disconnected target distributions, which is a common
issue in Stein variational gradient flows [29]. On the other
hand, the Sinkhorn divergence flow is limited by the compu-
tational cost associated with evaluating the optimal transport
distance—the computation increases linearly with the number
of samples from the target distribution [15], which could have
a larger impact as the size of search space increases.

Lastly, while formal convergence analyses exist for standard
trajectory optimization frameworks in ergodic coverage [33,
10], such analysis is currently lacking for our flow matching-
based ergodic coverage framework. As a result, the step size
parameters η, ∆τ , and the number of iterations in Algorithm 1
need be manually tuned in practice.

VII. CONCLUSIONS

In this work, we introduce a novel optimization paradigm
for ergodic coverage based on flow matching. Our method
enables alternative ergodic metrics previously infeasible for
control synthesis to overcome the limitations of existing met-
rics with no computational overhead. We show that using
the Stein variational gradient flow improves the robustness
of ergodic coverage on unnormalized target distributions, and
using the Sinkhorn divergence flow improves the ergodic
coverage performance over non-smooth distributions with ir-
regular supports. We further validate the effectiveness of our
method through hardware demonstrations on a Franka robot.

Our work provides a new perspective for bridging statistical
inference and the decision-making of embodied agents, where
the motion of the agents serves as a dynamically-constrained
inferred posterior. While this work focuses on two specific
methods to construct the flow, recent advances in flow-based

inference and generative models suggest that the methods
in this paper can be paired with any statistical inference
framework that admits flow-based inference, providing oppor-
tunities for advances in embodied intelligence. The coupling
between statistical inference and motion synthesis in our work
could further enable the integration of ergodic coverage as a
behavior characterization framework, which extends the con-
ventional notion of trajectory tracking to distribution tracking,
into learning-based methods for motion synthesis or policy
representations.
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