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I. RESEARCH OVERVIEW

For robots to have a greater impact on society, they must be
self-sufficient. This means being able to perceive, reason, and
adapt to uncertain and unstructured environments and tasks
using only onboard resources and no external supervision. Un-
like virtual learning systems, robots have the agency to actively
interact with the environment, other robots, and humans. Such
agency necessitates two crucial capabilities to support self-
sufficiency: cooperation and exploration. Cooperation enables
robots to leverage the intelligence and agency of other robots
and humans, and exploration enables robots to gather high-
quality data to adapt in unfamiliar scenarios.

The goal of my research is to develop optimal and
computationally efficient strategies for cooperation and
exploration, enabling self-sufficient robot autonomy across
environments and tasks. Formal optimality principles lead
to interpretable and provable properties, while computational
efficiency is necessary for physical intelligence using only
onboard resources. My work spans theory to algorithm design,
with a focus on real-world validation to bridge the gap between
theoretical development and practical deployment.

II. PREVIOUS RESEARCH CONTRIBUTIONS

A. Game-theoretic optimality for self-sufficient cooperation

Motivation. Self-sufficient cooperation requires robots to
coordinate actions with humans or other robots without relying
on explicit communication (e.g., verbal commands, predefined
protocols). In such settings, each agent can only estimate
others’ intent, introducing inherent uncertainty in decision-
making. This calls for both theoretical frameworks and practi-
cal algorithms to model emergent cooperative behaviors from
individual decisions under uncertainty. My previous work
explored this topic through the social navigation problem—
safe and efficient navigation alongside humans in unstruc-
tured environments. Without accounting for cooperation from
humans for collision avoidance, robots could exhibit overly
aggressive or conservative actions, known as the “freezing
robot problem” [22].

Game theory provides a principled framework for coopera-
tion, where agents optimize individual objectives that depend
on others’ actions. The Nash equilibrium is defined as an
optimality principle [11] where no agent can improve their
objective by unilaterally changing their action; when decisions
are represented as distributions, this extends to the mixed

Fig. 1: (Left) Nash-optimal trajectory distributions for coop-
erative collision avoidance. (Right) Social navigation in Santa
Cruz, CA, using only onboard perception and computation.

strategy Nash equilibrium (see Fig. 1). Compared to other
human-robot interaction methods, game-theoretic optimality
enables robots to account for how their actions influence
others [15], leading to better cooperation performance [16, 8]
and providing a structured framework for learning cooperation
strategies [12, 7]. However, applying game theory for scalable
real-time decision-making remains an open challenge due to
high computational cost and the need to hand-craft agent
objectives that align with real-world human behavior.
Contribution 1. In [21, 10], I developed scalable, real-time
inference of mixed strategy Nash equilibrium for untethered
social navigation in the real world. In [21], I introduced
a structured decision-making formulation that splits each
agent’s objective into collective (e.g., collision avoidance) and
individual (e.g., goal-directed navigation) components. This
formulation enables an efficient recursive Bayesian inference
scheme with guaranteed convergence to a mixed strategy Nash
equilibrium [10], which outperforms both learning-based and
non-learning-based social navigation methods in simulated and
real-world dataset benchmarks. I further developed a full-stack
social navigation system that was deployed on an untethered
wheeled robot at Honda Research Institute and a quadruped
robot, with the former used for a large-scale field study in
Santa Cruz, CA (see Fig. 1).
Contribution 2. The entanglement between individual behav-
ior and group behavior often obscures the learning of cooper-
ative policies. In [20], I applied game-theoretic optimality to
address this issue by developing a differentiable optimization
layer using the mixed strategy Nash equilibrium algorithm
from [10]. The proposed method effectively guides the learn-
ing process to distinguish individual policy and cooperation
among individual policies without compromising the fidelity
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Fig. 2: (Left) A coverage trajectory under the ergodic optimal-
ity. (Right) Ergodic coverage applied to a vision-based erasing
task under uncertainty from the onboard camera.

of the learned policy. Structuring the learning process using
Nash optimality significantly improved the data efficiency, the
robustness of the policy when facing novel behaviors, and
enabled learning from varying numbers of agents.

B. Ergodic optimality for self-sufficient exploration

Motivation. Self-sufficient exploration requires robots to
continuously search across uncertain, unstructured environ-
ments over extended periods of time. Uncertainty from the
environment, sensor measurements, and robot dynamics leads
to uneven information distributions, making repeated visitation
of certain regions inevitable. These requirements call for non-
myopic and even non-Markovian decision-making. In particu-
lar, the conventional state tracking-based notion of optimality
(e.g., next best view), which focuses on how each specific
point-in-time state individually contributes to exploration per-
formance, is insufficient compared to coverage-based methods
that account for spatial and temporal correlation across the
trajectory horizon [4, 23].

Ergodic coverage [9] provides a formal notion of optimality
for coverage-based exploration, where the ergodic metric
measures the difference between the spatial distribution of
the robot trajectory and a target distribution (see Fig. 2).
Ergodic coverage generates trajectories that allocate more
time covering regions with higher information density while
maintaining guaranteed asymptotic coverage, outperforming
greedy information maximization and uniform coverage [14].
Contribution 1. In [18], I significantly improved the scalabil-
ity and computational efficiency of ergodic coverage through
the use of kernel functions, enabling real-time long-horizon
ergodic coverage in 6D space and on Lie groups. The proposed
method was applied to a peg-in-hole insertion task, where
the problem is formulated as an exploration problem over the
state visitation distribution of human demonstrations. Ergodic
coverage reliably solves the problem without any learning at
all, even under suboptimal human demonstrations, and the
asymptotic coverage property leads to a 100% success rate
given sufficient time.
Contribution 2. In [19], I introduced the flow matching
method [5] from generative model learning to ergodic cov-
erage, enabling statistical inference methods previously infea-
sible for ergodic coverage, including Stein variational gradient
descent [6] and optimal transport [3]. Integrating these state-
of-the-art inference techniques significantly improves explo-

ration performance in scenarios challenging to existing meth-
ods, such as with unnormalized target distributions and non-
smooth distributions with irregular supports. These advantages
are demonstrated on hardware in a series of vision-based
erasing tasks, where the proposed method robustly erases
hand-drawn patterns through exploration, relying only on the
noisy on-board camera (see Fig. 2).

III. FUTURE RESEARCH AGENDA

With the promise of machine learning for robotics, my
future research answers how cooperation and exploration can
further advance robot learning to support self-sufficiency.
Imitation learning of cooperation. Given demonstrations of
two humans carrying a table together, can a robot learn to
carry the table with another human? While imitation learning
has gained significant attention in recent years [24, 2], the
tasks addressed are predominantly single-agent or centralized.
However, learning decentralized cooperative policies from
multi-agent demonstrations imposes significant challenges: the
policy depends on not only the environment, but also the
actions of other agents. Robots lack full controllability over
others’ actions and must plan actions that align with estimation
of their intent—and vice versa, align estimation of others’
intent with the robot’s planned actions. My future research will
address these challenges by guiding the supervised learning
process with structured cooperation models, such as differen-
tiable mixed strategy Nash equilibrium layers [20]. This allows
the learned policy to better distinguish between individual
intent and inter-agent influences, infer others’ intents, account
for how the robot’s actions could influence others, and improve
data efficiency.
Optimal data collection for robot learning. Data quality is
crucial for learning, and data collection for robots poses unique
challenges: robots are constrained by their dynamics and
geometry, make decisions in continuous time and space, and
often face non-Markovian tasks. Recently, several coverage-
based exploration methods have been formally shown to be
optimal data collection strategies for robot learning [1, 13].
These methods achieve optimality by optimizing the indepen-
dent and identically distributed (i.i.d.) property of collected
data. However, existing works are limited to a small set
of learning frameworks, such as model-based reinforcement
learning [1] and PAC learning [13]. Moreover, the integrations
with learning frameworks are post hoc, often compromising
model fidelity. My future research will expand exploration-
based data collection strategies focusing on the i.i.d. property
to broader robot learning frameworks, such as imitation learn-
ing, where coverage has already been shown to be an effective
demonstration strategy [17]. I will develop deeper integration
of exploration-based data collection without compromising
model performance. My previous work [19] directly integrated
generative model training methods into coverage-based explo-
ration. I will continue this direction, embedding exploration
as an inherent component of the learning processes, such that
the model produces not only inference results but also actions
for continual exploration and adaptation.
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[12] Lasse Peters, Vicenç Rubies-Royo, Claire J Tomlin,
Laura Ferranti, Javier Alonso-Mora, Cyrill Stachniss, and
David Fridovich-Keil. Online and offline learning of
player objectives from partial observations in dynamic
games. The International Journal of Robotics Research,
42(10):917–937, 2023.

[13] Allison Pinosky and Todd D. Murphey. Embodied Active

Learning of Generative Sensor-Object Models, 2024.
arXiv:2410.11130 [cs].

[14] Ahalya Prabhakar and Todd Murphey. Mechanical intelli-
gence for learning embodied sensor-object relationships.
Nature Communications, 13(1):4108, 2022.

[15] Dorsa Sadigh, Shankar Sastry, Sanjit A. Seshia, and
Anca D. Dragan. Planning for Autonomous Cars that
Leverage Effects on Human Actions. In Proceedings
of Robotics: Science and Systems, AnnArbor, Michigan,
2016.

[16] Wilko Schwarting, Alyssa Pierson, Javier Alonso-Mora,
Sertac Karaman, and Daniela Rus. Social behavior
for autonomous vehicles. Proceedings of the National
Academy of Sciences, 116(50):24972–24978, 2019.

[17] Max Simchowitz, Daniel Pfrommer, and Ali Jadbabaie.
The Pitfalls of Imitation Learning when Actions are
Continuous, 2025. arXiv:2503.09722 [cs].

[18] Max Muchen Sun, Ayush Gaggar, Pete Trautman, and
Todd Murphey. Fast Ergodic Search With Kernel Func-
tions. IEEE Transactions on Robotics, 41:1841–1860,
2025.

[19] Max Muchen Sun, Allison Pinosky, and Todd Murphey.
Flow Matching Ergodic Coverage. In Proceedings of
Robotics: Science and Systems. 2025.

[20] Max Muchen Sun, Pete Trautman, and Todd Murphey.
Inverse Mixed Strategy Games with Generative Trajec-
tory Models. In 2025 IEEE International Conference on
Robotics and Automation (ICRA), 2025.

[21] Muchen Sun, Francesca Baldini, Peter Trautman, and
Todd Murphey. Move Beyond Trajectories: Distribution
Space Coupling for Crowd Navigation. In Proceedings
of Robotics: Science and Systems. 2021.

[22] Peter Trautman, Jeremy Ma, Richard M. Murray, and An-
dreas Krause. Robot navigation in dense human crowds:
the case for cooperation. In 2013 IEEE International
Conference on Robotics and Automation, pages 2153–
2160, 2013.

[23] David Vutetakis and Jing Xiao. Active perception
network for non-myopic online exploration and visual
surface coverage. The International Journal of Robotics
Research, 44(2):247–272, 2025.

[24] Tony Z. Zhao, Vikash Kumar, Sergey Levine, and
Chelsea Finn. Learning Fine-Grained Bimanual Ma-
nipulation with Low-Cost Hardware. In Proceedings of
Robotics: Science and Systems, 2023.

https://www.nature.com/articles/s42256-024-00829-3
https://doi.org/10.1177/02783649241273668
https://doi.org/10.1177/02783649241273668
https://proceedings.mlr.press/v89/feydy19a.html
https://proceedings.mlr.press/v89/feydy19a.html
https://proceedings.mlr.press/v89/feydy19a.html
https://doi.org/10.1177/0278364914547893
https://doi.org/10.1177/0278364914547893
https://openreview.net/forum?id=PqvMRDCJT9t
https://openreview.net/forum?id=PqvMRDCJT9t
https://proceedings.neurips.cc/paper_files/paper/2016/hash/b3ba8f1bee1238a2f37603d90b58898d-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2016/hash/b3ba8f1bee1238a2f37603d90b58898d-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2016/hash/b3ba8f1bee1238a2f37603d90b58898d-Abstract.html
http://arxiv.org/abs/2402.08902
http://arxiv.org/abs/2402.08902
https://ieeexplore.ieee.org/document/10021943
https://ieeexplore.ieee.org/document/10021943
https://ieeexplore.ieee.org/document/7350162
https://ieeexplore.ieee.org/document/7350162
https://doi.org/10.1177/02783649241302342
https://doi.org/10.1177/02783649241302342
https://www.pnas.org/doi/10.1073/pnas.36.1.48
https://doi.org/10.1177/02783649231182453
https://doi.org/10.1177/02783649231182453
https://doi.org/10.1177/02783649231182453
http://arxiv.org/abs/2410.11130
http://arxiv.org/abs/2410.11130
https://www.nature.com/articles/s41467-022-31795-2
https://www.nature.com/articles/s41467-022-31795-2
https://www.roboticsproceedings.org/rss12/p29.html
https://www.roboticsproceedings.org/rss12/p29.html
https://www.pnas.org/doi/10.1073/pnas.1820676116
https://www.pnas.org/doi/10.1073/pnas.1820676116
http://arxiv.org/abs/2503.09722
http://arxiv.org/abs/2503.09722
https://ieeexplore.ieee.org/abstract/document/10891753
https://ieeexplore.ieee.org/abstract/document/10891753
https://arxiv.org/abs/2504.17872
http://arxiv.org/abs/2502.03356
http://arxiv.org/abs/2502.03356
http://www.roboticsproceedings.org/rss17/p053.pdf
http://www.roboticsproceedings.org/rss17/p053.pdf
https://ieeexplore.ieee.org/document/6630866
https://ieeexplore.ieee.org/document/6630866
https://doi.org/10.1177/02783649241264577
https://doi.org/10.1177/02783649241264577
https://doi.org/10.1177/02783649241264577
https://www.roboticsproceedings.org/rss19/p016.html
https://www.roboticsproceedings.org/rss19/p016.html

	Research Overview
	Previous Research Contributions
	Game-theoretic optimality for self-sufficient cooperation
	Ergodic optimality for self-sufficient exploration

	Future Research Agenda

