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Abstract—Coverage motion planning is essential to a wide
range of robotic tasks. Unlike conventional motion planning
problems, which reason over temporal sequences of states,
coverage motion planning requires reasoning over the spatial
distribution of entire trajectories, making standard motion
planning methods limited in computational efficiency and less
amenable to modern parallelization frameworks. In this work, we
formulate the coverage motion planning problem as a statistical
inference problem from the perspective of flow matching, a gen-
erative modeling technique that has gained significant attention
in recent years. The proposed formulation unifies commonly
used statistical discrepancy measures, such as Kullback-Leibler
divergence and Sinkhorn divergence, with a standard linear
quadratic regulator problem. More importantly, it decouples the
generation of trajectory gradients for coverage from the synthesis
of control under nonlinear system dynamics, enabling significant
acceleration through parallelization on modern computational ar-
chitectures, particularly Graphics Processing Units (GPUs). This
paper focuses on the advantages of this formulation in terms of
scalability through parallelization, highlighting its computational
benefits compared to conventional methods based on waypoint
tracking.

I. INTRODUCTION

Coverage motion planning—the problem of synthesizing a
robot trajectory to visit regions of the space based on certain
specifications (e.g., density maps)—is essential to a wide range
of robotic tasks, including autonomous exploration [10, 5], ma-
nipulation [23, 3], and embodied learning [21, 2]. For example,
a UAV performing a search and rescue mission must plan a
trajectory that comprehensively searches across regions of the
space based on prior information, such as satellite images [19].
Compared to conventional motion planning problems, cover-
age motion planning faces two unique computational chal-
lenges: (1) it requires reasoning over longer horizons; (2) it
involves reasoning not only over the temporal specification of
the task (e.g., reaching a sequence of states) but also over the
spatial specification (e.g., reaching a set of spatial landmarks).
The first challenge suggests that coverage motion planning
could benefit from modern computational architectures, in par-
ticular, parallelization. However, the need to reason over both
temporal and spatial specifications makes existing methods—
such as those generating a reference trajectory by solving a
traveling salesman problem (TSP) [25, 20, 22, 5]—difficult to
parallelize.

In the era of parallelism, a new formulation of the coverage
motion planning problem is necessary to better integrate paral-

lelization techniques. Therefore, we propose viewing coverage
motion planning as a statistical inference problem, where the
goal is to generate a trajectory—as a set of samples constrained
by the robot’s dynamics—with the same statistical properties
as a reference spatial distribution specifying the coverage task
(see Fig. 1). The proposed formulation [24], which stems from
a branch of robotic motion planning techniques named ergodic
control [18], separates the coverage motion planning problem
into two steps: first, a gradient vector field is generated based
on the statistical discrepancy between the trajectory and the
reference distribution; then, the robot’s control is synthesized
based on the generated gradient, taking into account the robot’s
dynamics. The first step is equivalent to standard practices in
modern generative inference methods, which can be effectively
accelerated through parallelization, particularly on Graphics
Processing Units (GPUs). The second step is a standard opti-
mal control problem, which can be efficiently solved without
the need for parallelization. Essentially, our method focuses
on tracking the gradient of the trajectory toward a reference
distribution instead of directly optimizing the trajectory given
reference waypoints.

This paper serves as a complementary study for [24] fo-
cusing on the advantages of the proposed method in terms of
parallelization on GPUs. We introduce the formulation and al-
gorithm description, specifically with two approaches for spec-
ifying the reference gradient—based on the Stein variational
gradient descent [15] and based on Sinkhorn divergence [8]—
highlighting the computational advantage of our method, with
and without GPU acceleration, and compared with a baseline
method based on the traveling salesman problem (TSP).

II. METHODOLOGY

A. Problem formulation

Denote a system’s state as s(t)∈X , the control as u(t)∈U ,
and the continuous-time dynamics as ṡ(t)=f(s(t),u(t)). The
reference distribution (also called target distribution) is de-
noted as q(x), the domain of which is the same as the robot
state space X . We define the empirical distribution of the
trajectory as:

ps(x) =
1

tf

∫ tf

0

δ(x− s(t))dt, (1)

where tf is the trajectory horizon and δ(x) is a Dirac delta
function.
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Fig. 1: Our method adapts flow-based generative inference methods to generate dynamically feasible flow directions on the state
trajectory. Reference flow on the state trajectory is generated using standard methods from machine learning and accelerated
through GPU parallelization. Lastly, we synthesize control gradients that generate dynamically feasible flow on the state
trajectory by solving a linear quadratic regulator (LQR) problem.

Given a statistical discrepancy measure D, such as the
Kullback-Leibler divergence, we can formulate the coverage
problem as the following trajectory optimization problem:

argmin
u(t)

D(ps(x), q(x)), (2)

s.t., s(t) = s0 +

∫ t

0

f(s(τ), u(τ))dτ. (3)

The reference trajectory q(x) specifies the coverage task and
its representation can vary depending on the task. For example,
q(x) can be presented as a set of samples, which makes it
compatible with conventional waypoint-based coverage task
specifications. On the other hand, q(x) can also be represented
as a continuous utility function specifying the varying impor-
tance of different regions across the search space [16, 1, 6].

Directly solving the optimization problem (2) is challeng-
ing as the statistical discrepancy (2) between the trajectory
empirical distribution and the reference distribution is often
not compatible with standard trajectory optimization formulas
(e.g., time integral of runtime cost functions defined at a
specific time). We now introduce the algorithm from [24]
that solves the optimization problem in (2) by adapting the
flow matching [14] formula from generative modeling.

B. Flow-based statistical inference

Given a set of n samples s={si}n with underlying dis-
tribution ps(x), a vector field g(x), called the flow vector
field, can be evaluated at each sample as δsi=g(si). Taking an
infinitesimally small step ϵ along this vector field yields a new
set of samples {si+ ϵ · δsi}. In flow-based sample generation,
the flow vector field g(x) is constructed iteratively such that
the underlying distribution of the new samples converges to
the reference distribution q(x) under the discrepancy measure
D(ps, q) (see Fig. 1). Such flow-based sampling generation
techniques are widely used in statistical inference and gener-
ative modeling, such as in Stein variational gradient descent
and optimal transport. We specify two kinds of flow vector
fields here.
[Stein variational gradient flow] We specify the flow vector

Reference flow
(dynamically infeasible)

Matched flow
(dynamically feasible)

Fig. 2: Our linear quadratic flow matching formula generates
dynamically feasible flow on the state trajectory that closely
matches the reference flow.

field given the set of samples {si}n as:

g(si) =
1

n

n∑
j=1

[
k(sj , si)∇sj log q(sj) +∇sjk(sj , si)

]
, (4)

where k(s, s′) is a kernel function that is often specified as a
radial basis kernel function in practice. It is shown in [15] that
this vector field is the steepest descent direction of the KL-
divergence between ps(x) and q(x) in a reproducing kernel
Hilbert space.
[Sinkhorn divergence gradient flow] We first introduce the
entropic regularized optimal transport distance OTω between
the sample empirical distribution ps(x) and the reference
distribution q(x), where the reference distribution q(x)=pz(x)
is also represented as a set of m samples s′={s′j}m:

OTω(ps, q) = min
T∈Rn×m

∑
i,j

Ti,j ·c(si, s′j) + ω·Ti,j log(Ti,j)

s.t. T ·1m = 1n, T
⊤·1n = 1m, Ti,j ≥ 0, (5)

where c(s, s′) is a cost function that is often specified as the
squared norm in practice, and ω is the entropic regulation
weight. Based on the entropic regularized optimal transport
distance, we specify the statistical discrepancy measure in our
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Fig. 3: Example coverage trajectories generated by the TSP
baseline and our flow matching method based on the Stein
variational gradient flow for a differential-drive robot.

trajectory optimization formula (2) as the Sinkhorn divergence:

D(ps, q) = OTω(ps, q)−
1

2
OTω(ps, ps)−

1

2
OTω(q, q). (6)

Importantly, the optimization problem in (5) is convex and
can be solved efficiently using the Sinkhorn algorithm [7],
the process of which is differentiable with respect to the
samples s={si}n. Therefore, the gradient flow vector field
for Sinkhorn divergence is evaluated as:

g(si) = ∇si

[
OTω(ps, q)−

1

2
OTω(ps, ps)−

1

2
OTω(q, q)

]
,

(7)

which can be efficiently calculated in practice through auto-
differentiation.
[Reference flow on state trajectory] Given the robot’s current
trajectory s(t), we can discretize the continuous-time trajec-
tory into discrete time steps {ti}, which can be viewed as a set
of state samples indexed by the time steps {sti}. Therefore, we
can generate a reference flow on the state trajectory, denoted
as a(t), by evaluating the flow vector field g(x) across the
time steps, where ati=g(sti).
[Parallelized flow evaluation] Crucially, since the robot tra-
jectory is simply viewed as a set of samples, the evaluation
of the flow vector field—which essentially only involves
summations of various calculations across all the samples—
for both the Stein variational gradient flow (4) and the
Sinkhorn divergence gradient flow (7) can be significantly
accelerated through parallelization, especially on GPUs and
for long-horizon trajectories [12, 11]. Furthermore, since the
evaluation of the reference flow does not need to take into
account the robot’s dynamics, the evaluation can be conducted
simultaneously across all the time steps, leading to additional
improvements in computational efficiency from parallelization.
[Properties of reference flows] The Stein variational gradient
(4) and the Sinkhorn divergence gradient (7) have different
properties that make them better choices for different coverage
tasks. From the coverage performance perspective, the Stein
variational gradient only requires access to the score function
(the derivative of the log-likelihood) of the reference distri-
bution, thus is more robust when the reference distribution

Fig. 4: Example coverage trajectories generated by the TSP
baseline and our flow matching method based on the Sinkhorn
divergence gradient flow for an aircraft robot.

is not normalized [24]. Sinkhorn divergence gradient leads to
better coverage accuracy on reference distributions with non-
smooth and irregular support. We refer the readers to [24] for
more details on how different gradient evaluation formulas
lead to better coverage performance and their computational
efficiency.

C. From gradients to control synthesis

[Intuition] We cannot directly update the robot trajectory
s(t) in the direction of the reference flow a(t), as s(t) is
constrained by the dynamics of the system while the evaluation
of a(t) is not aware of the dynamical constraints. Instead, we
need to synthesize the gradient v(t) on the control u(t) of
the system, such that the resulting dynamically feasible flow
z(t) on the state trajectory s(t)—constrained by the system
dynamics f(s(t), u(t))—closely matches the reference trajec-
tory gradient a(t). Importantly, there exists a linear dynamics
structure between the gradient on the control v(t) and the
dynamically feasible flow on the state trajectory z(t) [9, 17]:

ż(t) = A(t)z(t) +B(t)v(t), z(0) = 0, (8)
A(t) = ∇xf(x(t), u(t)), B(t) = ∇uf(x(t), u(t)).

[Linear quadratic flow matching] Based on the linear
dynamics structure in (8), we can synthesize the gradient on
the control by solving the following linear quadratic regulator
(LQR) problem:

v(t)∗ = argmin
v(t)

∫ tf

0

|a(t)− z(t)|2Q+|v(t)|2Rdt, (9)

ż(t) = A(t)z(t) +B(t)v(t), z(0) = 0, (10)

which can be solved in closed-form using the continuous-time
Riccati equation [9] (see Fig. 2). We can iteratively optimize
the robot trajectory to synthesize its statistical property by
iteratively solving the LQR problem (9) and updating the
control following the optimal control gradient v(t)∗.

III. EXPERIMENT

A. Benchmark design

We design the benchmark to evaluate the computational
efficiency of our flow matching formula with and without
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Fig. 5: Time efficiency comparison of our method using the
Stein variational gradient flow (on GPU and CPU) and the
TSP baseline. The TSP baseline is not tested beyond 1000
time steps due to the high computation time.

GPU parallelization, as well as a baseline method based on
solving the traveling salesman problem (TSP). We implement
our formula for both the Stein variational gradient flow and
the Sinkhorn divergence gradient flow.

To benchmark our implementation with the Stein variational
gradient flow, we specify the robot dynamics as a differential
drive system and vary the number of time steps of the planning
horizon from 100 to 1000 with an interval of 100, and from
1000 to 10000 with an interval of 1000. To benchmark our
implementation with the Sinkhorn divergence gradient flow,
we specify the robot dynamics as a 3D aircraft. We vary the
number of time steps of the planning horizon from 100 to 500
with an interval of 100, and from 500 to 2500 with an interval
of 500. We record the elapsed time of each method.

B. Implementation details

We implement our method in JAX [4] for GPU acceleration.
We use the OTT package1 for evaluating the Sinkhorn gradient
flow and the LQRax package2 for solving the LQR problem.
All the benchmark experiments are conducted on Intel Xeon
w9-3495X CPU and NVIDIA RTX 6000 GPU.

For the TSP baseline, we sample as many points from the
reference distribution as the trajectory horizon, order them
using heuristic local search via the python-tsp package3, and
use the result as a reference trajectory for standard trajectory
tracking control.

C. Results

Qualitative results of the coverage trajectories from our
method (using both the Stein variational gradient flow and the
Sinkhorn divergence gradient flow) and the TSP baseline are
shown in Fig. 3 and Fig. 4. Quantitative results on the compu-
tation time across different trajectory horizons can be found in
Fig. 5 for our method using the Stein variational gradient flow
and in Fig. 6 for our method using the Sinkhorn divergence
gradient flow. While our method on CPU and the TSP baseline

1https://github.com/ott-jax/ott
2https://github.com/MaxMSun/lqrax
3https://github.com/fillipe-gsm/python-tsp
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Fig. 6: Time efficiency comparison of our method using the
Sinkhorn divergence gradient flow (on GPU and CPU) and the
TSP baseline.

show lower computation time with shorter time horizons (e.g.,
less than 300 time steps), our flow matching method with GPU
parallelization exhibits better scalability across different time
horizons, significantly outperforming other methods at longer
time horizons, with both specifications of the reference flow.
All methods achieved consistent coverage across the trials,
with quantitative coverage accuracy and robustness metrics of
our methods available in [24].

We would like to point out that our statistical inference-
based formulation of the coverage motion planning naturally
leads to multiple equally good optima based on different initial
conditions—similar to how different random seeds lead to
different but equally good sets of samples. This property can
be further leveraged in practice to improve robustness [13].

IV. CONCLUSION

In this work, we present a scalable approach to coverage
trajectory synthesis by formulating the problem as statistical
inference via flow matching. Our method separates the compu-
tation of trajectory gradients from control synthesis, enabling
significant acceleration through GPU parallelization compared
to conventional waypoint-based methods. We demonstrate that
our method significantly improves scalability compared to
conventional waypoint-based methods, without compromising
coverage quality. Furthermore, our method is not mutually
exclusive from the waypoint-based methods, which can be
used to accelerate the convergence of our method by providing
a better initial trajectory. This study highlights the potential of
leveraging modern generative modeling techniques and par-
allel computing for long-horizon robotic planning tasks. Our
future work will focus on integrating the proposed method in
practical robotics applications, such as large-scale exploration
in unstructured environments.
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